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The dual space of hr
p(R) for 0 < p < 1

Some Classical Backgrounds

Let f = (fn) be a martingale defined on a probability space (Ω,F ,P).

Let Hs
p denote the martingale Hardy space associated with the

conditional quadratic variation, that is,

Hs
p =

{
f = (fn)n≥0 : ‖f ‖Hs

p
=
∥∥∥( ∞∑

i=1

Ei−1|di f |2
) 1

2
∥∥∥
p
<∞

}
.

Define the BMO space: 1 ≤ r <∞

BMOr (α) = {f ∈ Lr : ‖f ‖BMOr (α) = sup
ν∈T

P(ν <∞)−
1
r
−α‖f−f ν‖r <∞}.
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The dual space of hr
p(R) for 0 < p < 1

Some Classical Backgrounds

Weisz (1994, Lecture Math. Note)(
Hs
p

)∗
= BMO2(α), (0 < p < 1, α =

1

p
− 1)

Nakai et al. (2012, Math. Nachr.)(
Hs

Φ

)∗
= L2,φ φ(r) =

1

rΦ−1(1/r)
.

Jiao et al. (2017, Trans. AMS)(
Hs
p,q

)∗
= BMO2(α), (0 < q ≤ 1),

and (
Hs
p,q

)∗
= BMO2,q(α), (1 < q <∞),

where 0 < p ≤ 1 and α = 1
p − 1.
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The dual space of hr
p(R) for 0 < p < 1

The NC Case

A description of the dual space of hc
p(M) for 0 < p < 1 was provided

by Bekjan and Chen.

However, they pointed out that such description is unsatisfactory.
They explicitly asked the following problem:
Problem (Bekjan and Chen, 2010, JFA): Can we describe the
dual space of hc

p(M) as a Lipschitz space for 0 < p < 1?

In the classical case, the main tool to solve this problem is the
constructed atomic decomposition (Wesiz hp, Jiao etc. hp,q, Nakai
etc. hΦ). But so far, this method is unavailable in noncommutative
setting.
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Note that Herz considered this problem in classical setting for dyadic
martingales without using atomic decomposition.

Let An be the σ-algebra generated by dyadic intervals of length 2−n in
the unit interval [0, 1], A be the σ-algebra generated by ∪n≥1An and P
denote the Lebesgue measure on [0, 1].
A martingale {fn}n≥1 with respect to ([0, 1],A,P) is called dyadic.
Martingale Hardy space and Lipschitz space are respectively defined as

hp =
{
f = (fn)n≥0 : ‖f ‖hp =

∥∥∥( ∞∑
n=0

En−1(|fn − fn−1|2)
)1/2∥∥∥

p
<∞

}
;

Lipα =
{
f = (fn)n≥0 ∈ L2 : ‖f ‖Lipα

<∞
}
,

where ‖f ‖Lipα
= |E0(f )|+ sup

n≥0
2αn‖En(|f − Enf |2)‖1/2

∞ .

Herz’s result (Herz 1973) can be summarized as follows: let 0 < p < 1
and let α = 1

p − 1. Then (hp)∗ = Lipα.
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The dual space of hr
p(R) for 0 < p < 1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?

Noncommutative Dyadic Martingales

R is the hyperfinite type II1 factor equipped with its natural
increasing filtration (Rn)n≥1.

En is the conditional expectation of R onto Rn.

A sequence x = (xn)n≥0 in L1(R) is called a sequence of dyadic
martingale differences if En−1(xn) = 0 for all n ≥ 1.

For x = (xn)n≥0 in L2(R), we define

sc,n(x) =
( n∑

k=0

Ek−1(|xk |2)
)1/2

, sc(x) =
( ∞∑

k=0

Ek−1(|xk |2)
)1/2

;
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sr ,n(x) =
( n∑

k=0

Ek−1(|x∗k |2)
)1/2

, sr (x) =
( ∞∑

k=0

Ek−1(|x∗k |2)
)1/2

;

For 0 < p <∞, the Hardy space hcp(R) is defined as the collection of
all martingale differences x = (xn)n≥0 in L2(R) s.t. sc(x) ∈ Lp(R),
equipped with the (quasi-)norm ‖(xn)n≥0‖hc

p
= ‖sc(x)‖p.

For α ≥ 0, we define the martingale Lipschitz space Lipcα(R) as the
set

Lipcα(R) = {x ∈ L2(R) : sup
n≥0

2nα‖En(|x − Enx |2)‖∞ <∞}

equipped with the norm

‖x‖Lipcα(R) = max

(
|τ(x)|, sup

n≥0
2nα‖En(|x − Enx |2)‖1/2

∞

)
.

Similarly, define Liprα(R) equipped with the norm

‖x‖Liprα(R) = ‖x∗‖Lipcα(R).
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The dual space of hr
p(R) for 0 < p < 1

Main Result

The following is our main result of this section:

Theorem 1 (J., Zhou, Wu, Zanin, 2017)

For every 0 < p < 1, we have (hr
p(R))∗ = Lipcα(R), α = 1

p − 1. More
precisely, for every x ∈ Lipcα(R), the functional

ϕx : y 7→
∑
n≥0

τ(ynxn), y ∈ hr
p(R),

is well-defined and bounded. Conversely, each ϕ ∈ (hr
p(R))∗ is given by

the above formula with some x ∈ Lipcα(R). Moreover,

‖x‖Lipcα(R) ≤ ‖ϕ‖(hr
p)∗ .
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Lemma 1 (Junge-Xu, 2003)

Let 0 ≤ b ≤ a ∈ L1(M) such that the supp(a) = 1. For 1 ≤ k <∞, we
have

τ
(
a

1−k
2 (ak − bk)a

1−k
2

)
≤ 2kτ(a− b).

Lemma 2 (J., Zhou, Wu, Zanin, 2017)

If 0 ≤ b ≤ a ∈ L1(M) and β ∈ (0, 1), then

βτ(a− b) ≤ τ((aβ − bβ)a1−β) ≤ τ(a− b).
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Proposition 3 (J., Zhou, Wu, Zanin, 2017)

Let 0 < p < 1 and let α = 1
p − 1. If x ∈ Lipcα(R) and if y ∈ hr

p(R), then

∑
n≥0

τ(|xn|2sr ,n(y)2−p) ≤ 2 + 3p

p
‖y‖2−p

hr
p
‖x‖2

Lipcα
.

Proposition 4 (J., Zhou, Wu, Zanin, 2017)

Let y ∈ hr
p(R) for 0 < p ≤ 2. We have∑

n≥0

τ
(
|y∗n |2sr ,n(y)p−2

)
≤ 2

2
p ‖y‖phr

p
.

Observation: For x ∈ R+
n , there exists a projection e such that τ(e) = 2−n

and
‖x‖∞ = 2nτ(ex).
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Outline of the proof: (i) Let x ∈ Lipcα(R) and y ∈ hr
p(R). Assume that

sr ,n(y) is invertible. Then

ϕx(y) ,=
∣∣∣∑
n≥0

τ(xnyn)
∣∣∣ ≤∑

n≥0

∥∥∥xnsr ,n(y)1− p
2

∥∥∥
2
·
∥∥∥sr ,n(y)

p
2
−1yn

∥∥∥
2

≤
(∑

n≥0

‖xnsr ,n(y)1− p
2

∥∥∥2

2

) 1
2 ·
(∑

n≥0

∥∥∥sr ,n(y)
p
2
−1yn

∥∥∥2

2

) 1
2

, I · II.

It follows from Proposition 3 that

I2 = τ
(∑

n≥0

|xn|2sr ,n(y)2−p
)
≤ 2 + 3p

p
‖y‖2−p

hr
p
‖x‖2

Lipcα
.

It follows from Proposition 4 that

II2 = τ
(∑

n≥0

|y∗n |2sr ,n(y)p−2
)
≤ 2

2
p ‖y‖phr

p
.
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(ii) Let ϕ ∈ (hr
p(R))∗ such that ‖ϕ‖(hr

p)∗ ≤ 1.

Since L2(R) is dense in hr
p(R), there exists x ∈ L2(R) such that

ϕ(y) =
∑
k

τ(xkyk), ∀y = (yn)n≥0 ∈ L2(R).

It suffices to show that ‖x‖Lipcα ≤ ‖ϕ‖(hr
p)∗ .

Fix n, choose e ∈ Rn such that τ(e) = 2−n and

‖En(|x − En(x)|2)‖∞ = 2nτ(e · En(|x − En(x)|2)) = 2n
∑
k>n

τ(e|xk |2).

Set

yk =

{
0, k ≤ n

2n(1+2α)ex∗k , k > n
.

Yong Jiao (CSU) Noncommutative Dyadic Martingales
Wuhan University, Wuhan, May 19, 2017 13

/ 27



Then we have

IIIn , 22nα‖En(|x − En(x)|2)‖∞ = |
∑
k

τ(ykxk)|

= |ϕ(y)| ≤ ‖y‖hr
p

= ‖s2
r (y)‖

1
2
p
2
;

Vn , En(s2
r (y)) = 22n(1+2α) ·

∑
k>n

En(e|xk |2e)

= 22n(1+α) · e · 22nαEn(|x − En(x)|2) · e.

Observe that Vn ≤ IIIn · 22n(1+α)e. This implies

IIIn ≤ ‖s2r (y)‖
1
2
p
2
≤ ‖V

1
2
n ‖p ≤ III

1
2
n · 2

n
p ‖e‖p = III

1
2
n .

Taking the supremum over all n ≥ 0, we conclude that

sup
n≥0

2nα‖En(|x − En(x)|2)‖1/2
∞ = sup

n≥0
III1/2n ≤ 1. �
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Partial Sums of Noncommutative Walsh-Fourier series

Classical result due to Watari

Let (rk)k≥0 be the Rademacher functions on [0, 1).

The Walsh system {ωn}n≥1 is defined as follows: let ω0(t) = 1 and

ωn(t) =
∏j

i=1 rn(i)(t), where n =
∑j

i=1 2n(i)−1 with
{n(1) > n(2) > · · · > n(j) > 0}.
Every f ∈ L1([0, 1)) can be written as a formal Walsh-Fourier series,

f ∼
∞∑
k=0

f̂ (k)ωk , f̂ (k) =

∫ 1

0
f (t)ωk(t) dt.

The n-th partial sum of the Walsh-Fourier series of f is defined by
setting

Sn(f ) =
n−1∑
k=0

f̂ (k)ωk .
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Then Watari’s result reads as follows:

Theorem (Watari, 1964)

For every f ∈ L1(0, 1) and for every n ≥ 0, we have

‖Sn(f )‖L1,∞(0,1) ≤ c‖f ‖L1(0,1).

Question:

Can we find a noncommutative analogous of the above result?
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Partial Sums of Noncommutative Walsh-Fourier series

γ-th partial sum of noncommutative Walsh-Fourier series

1) Consider the Pauli matrices:

σ0 =

(
1 0
0 −1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
The “anticommutative Rademacher system”in R is defined by setting:

r0 = 1, r1 = σ1 ⊗
∞⊗
i=2

1M2 , r2 = σ2 ⊗
∞⊗
i=2

1M2 ,

and for n = 2k + s where s ∈ {1, 2},

rn =
( k⊗

i=1

σ0

)⊗
σs
⊗( ∞⊗

i=k+2

1M2

)
.
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The rn’s are self-adjoint unitary operators. Moreover,

rj rk + rk rj = 0, k 6= j .

2) Let F be the family of all finite subsets of N. For γ ∈ F , the
noncommutative Walsh system is defined by setting

ωγ = rγ(1)rγ(2) . . . rγ(k) for γ = {γ(1) > γ(2) > · · · > γ(k) > 0}.

We also set ω∅ = 1.
3) For γ = {γ(1) > γ(2) > · · · > γ(s) > 0} ∈ F , let kγ =

∑s
i=1 2γ(i)−1.

Definition

For x ∈ L1(R), we define the γ-th partial sum of the Walsh-Fourier series
of x with a given γ ∈ F as follows:

Sγ(x) =
∑

{η∈F :kη<kγ}

x̂(η)ωη.
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Partial Sums of Noncommutative Walsh-Fourier series

A weak type inequality of γ-th partial sum operator

The following is our main result of this section:

Theorem 2 (J., Zhou, Wu, Zanin, 2017)

For every x ∈ L1(R) and for every γ ∈ F , we have

‖Sγ(x)‖L1,∞(R) ≤ c‖x‖L1(R).

Corollary (J., Zhou, Wu, Zanin, 2017)

For every x ∈ Lp(R), 1 < p <∞, and for every γ ∈ F , we have

‖Sγ(x)‖Lp(R) ≤ cp‖x‖Lp(R).
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Corollary (J., Zhou, Wu, Zanin, 2017)

For every x ∈ Λψ(R) and for everyγ ∈ F , we have

‖Sγ(x)‖L1(R) ≤ cabs‖x‖Λψ(R).

Here, Λψ is a Lorentz space with ψ(t) = t(1 + log( 1
t )).
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NC Calderon-Zygmund decomposition (Parcet, 2003, JFA)

1) For 0 ≤ x ∈ L1(R) and λ > 0, it follows from noncommutative
Calderón-Zygmund decomposition that x = A + B, where

A = qxq +
∞∑
k=1

pkEkxpk ;

B =
∞∑
k=1

∞∑
l=1

pk(x − Ek∨lx)pl +
∞∑

1≤k<l

pk(Elx − El−1x)ql−1

+ ql−1(Elx − El−1x)pk .

Lemma 3

If 0 ≤ x ∈ L1(R) and λ > 0, then

‖A‖2
2 ≤ 16λ‖x‖1.
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2) For 0 ≤ x ∈ L1(R) and δ ∈ F , define the operator Dδ by setting

Dδ(x) =
∑

α∈F ,α(1)∈δ

x̂(α)ωα.

Lemma 4 (J., Zhou, Wu, Zanin, 2017)

Let δ ∈ F and let x ∈ L1(R).

(i) For every k , l ≥ 1, we have

Dδ(pk(x − Ek∨lx)pl) = pkDδ(x − Ek∨lx)pl .

(ii) For every 1 ≤ k < l , we have

Dδ(pk(Elx − El−1x)ql−1) = pkDδ(Elx − El−1x)ql−1,

Dδ(ql−1(Elx − El−1x)pk) = ql−1Dδ(Elx − El−1x)pk .
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3) Sketch of the proof of Theorem 2:

Let δ ∈ F . For x ∈ L1(R), we have Sδ(x)ω∗δ = Dδ(xω
∗
δ ). Since

|ωδSδ(x)| = |Sδ(x)|, it suffices to prove the weak inequality for Dδ.

For λ > 0, using the noncommutative Calderón-Zygmund’s
decomposition we have

τ
(
χ(λ,∞)(|Dδ(x)|)

)
≤ τ

(
χ(λ,∞)(|Dδ(A)|)

)
+ τ
(
χ(0,∞)(|Dδ(B)|)

)
= V + VI.

From Lemma 3 we have

V ≤ λ−2‖Dδ(A)‖22 ≤ λ−2‖A‖22≤
16

λ
‖x‖1.

By Lemma 4,

VI ≤ 3τ(1− q)≤ 3

λ
‖x‖1. �
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Noncommutative Walsh systems in Lp(R) and in BMO(R)

Let WL = {γ ∈ F : Card(γ) = L}. Denote the closed linear space of
(ωγ)γ∈WL

by [WL].

Theorem (Müller and Schechtman, 1989)

For L ≥ 2, [WL] is not complemented in martingale Hardy space H1.

Our main result of this section demonstrates a very substantial difference
from the above theorem.

Theorem 3 (J., Zhou, Wu, Zanin, 2017)

[W2] is complemented in bmo(R) and in H1(R).
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Theorem 4

Let 1 ≤ p <∞ and let L ≥ 1. For every (αγ)γ∈F ∈ l2(F), we have∥∥∥ ∑
γ∈WL

αγωγ

∥∥∥
Lp(R)

≈p,L

( ∑
γ∈WL

|αγ |2
)1/2

.

Theorem 5

For every (αγ)γ∈F ∈ l2(F), we have(∑
|αγ |2

)1/2
≤
∥∥∥ ∑
γ∈W2

αγωγ

∥∥∥
bmoc

≤ 2
(∑

|αγ |2
)1/2

.
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Proof of Theorem 3: Let P be the orthogonal projection on L2(R) by
setting

Px =
∑
γ∈W2

〈x , ωγ〉ωγ , x ∈ L2(R).

According to Theorem 5, we have

‖Px‖bmoc (R) ≤ 4‖Px‖2 ≤ 4‖x‖2 ≤ 4‖x‖bmoc (R).

The same inequality holds in bmor (R) and, therefore, in bmo(R). Thus,
[W2] is complemented in bmo(R). Recall that BMOc(R) = bmoc(R). By
duality,

‖Px‖Hc
1(R) . ‖x‖Hc

1(R).

Therefore,

‖Px‖H1(R) ≤ inf
{
‖Py‖Hc

1(R) + ‖Pz‖Hr
1(R) : x = y + z

}
. inf

{
‖y‖Hc

1(R) + ‖z‖Hr
1(R) : x = y + z

}
= ‖x‖H1(R). �
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Thank You !
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