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o Let f = (f,) be a martingale defined on a probability space (2, F, P).

Yong Jiao (CSU) Noncommutative Dyadic Martingales /27



The dual space of h[(R) for 0 < p <1

Some Classical Backgrounds

o Let f = (f,) be a martingale defined on a probability space (2, F, P).

e Let Hj denote the martingale Hardy space associated with the
conditional quadratic variation, that is,

N|—=

< oo}.
p

Hp = {f = (f)n>0 : [ fllH; = H (iEi—1|dif|2>
i—1

@ Define the BMO space: 1 <r < o0

1
BMO,(a) = {f € L : ||fllamo,(a) = sug;lP’(V < o0) =Y, < oo}
ve
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The dual space of h[(R) for 0 < p <1

Some Classical Backgrounds
e Weisz (1994, Lecture Math. Note)

% 1
(H;)" = BMOx(a), (0<p<1, a= i 1)
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The dual space of h[(R) for 0 < p <1

Some Classical Backgrounds
e Weisz (1994, Lecture Math. Note)

* 1
(H;)" = BMOx(a), (0<p<1, a= i 1)

e Nakai et al. (2012, Math. Nachr.)

(H)" = L6 01) = =377y
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The dual space of h[(R) for 0 < p <1

Some Classical Backgrounds
e Weisz (1994, Lecture Math. Note)

* 1
(H;)" = BMOx(a), (0<p<1, a= i 1)

e Nakai et al. (2012, Math. Nachr.)
1

(H3) = Loy o(r) = o 1(1/r)’
e Jiao et al. (2017, Trans. AMS)
(H54)" = BMOy(a), (0<q<1),

and
(H;,q) = BMO, 4(a), (1< q<o00),

where0<p§1anda:%—1.
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The dual space of h[(R) for 0 < p <1

The NC Case
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The dual space of h[(R) for 0 < p <1

The NC Case

o A description of the dual space of hf(M) for 0 < p < 1 was provided
by Bekjan and Chen.
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The dual space of h[(R) for 0 < p <1

The NC Case

o A description of the dual space of hf(M) for 0 < p < 1 was provided
by Bekjan and Chen.

@ However, they pointed out that such description is unsatisfactory.
They explicitly asked the following problem:
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The dual space of hi(R) for 0 < p <1

The NC Case
o A description of the dual space of hf(M) for 0 < p < 1 was provided
by Bekjan and Chen.

@ However, they pointed out that such description is unsatisfactory.
They explicitly asked the following problem:
Problem (Bekjan and Chen, 2010, JFA): Can we describe the
dual space of h;(M) as a Lipschitz space for 0 < p < 17
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The dual space of hi(R) for 0 < p <1

The NC Case

o A description of the dual space of hf(M) for 0 < p < 1 was provided
by Bekjan and Chen.

@ However, they pointed out that such description is unsatisfactory.
They explicitly asked the following problem:
Problem (Bekjan and Chen, 2010, JFA): Can we describe the
dual space of h;(M) as a Lipschitz space for 0 < p < 17

@ In the classical case, the main tool to solve this problem is the
constructed atomic decomposition (Wesiz hp, Jiao etc. hp 4, Nakai
etc. he). But so far, this method is unavailable in noncommutative
setting.
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@ Note that Herz considered this problem in classical setting for dyadic
martingales without using atomic decomposition.

Yong Jiao (CSU) Noncommutative Dyadic Martingales /27



@ Note that Herz considered this problem in classical setting for dyadic
martingales without using atomic decomposition.

o Let A, be the o-algebra generated by dyadic intervals of length 27" in
the unit interval [0,1], A be the o-algebra generated by U,>1.4, and P

denote the Lebesgue measure on [0, 1].
o A martingale {f,},>1 with respect to ([0,1], .4, P) is called dyadic.
o Martingale Hardy space and Lipschitz space are respectively defined as

oo H\1/2
ho = {7 = (o b, = | (S Eoral—aP) | <)

Lipa = {f = (fn)nzo €ly: ||f||Lipa < OO}7
where ||f|vip, = [Eo(f)| + sup 2*"|[Eq(|f — Eqf[?)||22.
n>0
o Herz's result (Herz 1973) can be summarized as follows: let 0 < p < 1

and let a = % — 1. Then (hy)* = Lip,.
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@ Note that Herz considered this problem in classical setting for dyadic
martingales without using atomic decomposition.
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The dual space of h[(R) for 0 < p <1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?
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The dual space of h[(R) for 0 < p <1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?

Noncommutative Dyadic Martingales

@ R is the hyperfinite type Il; factor equipped with its natural
increasing filtration (Rp)n>1.
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The dual space of h[(R) for 0 < p <1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?

Noncommutative Dyadic Martingales

@ R is the hyperfinite type Il; factor equipped with its natural
increasing filtration (Rp)n>1.

e &, is the conditional expectation of R onto R,,.
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The dual space of hi(R) for 0 < p <1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?

Noncommutative Dyadic Martingales
@ R is the hyperfinite type Il; factor equipped with its natural
increasing filtration (Rp)n>1.
@ &, is the conditional expectation of R onto R,,.

o A sequence x = (X,)n>0 in L1(R) is called a sequence of dyadic
martingale differences if £,-1(x,) = 0 for all n > 1.
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The dual space of hi(R) for 0 < p <1

Question: Although we could not get the duality for generic filtration
because of the lack of atomic decompositions, can we obtain the duality
for noncommutative dyadic martingales?

Noncommutative Dyadic Martingales
@ R is the hyperfinite type Il; factor equipped with its natural
increasing filtration (Rp)n>1.
@ &, is the conditional expectation of R onto R,,.

o A sequence x = (X,)n>0 in L1(R) is called a sequence of dyadic
martingale differences if £,-1(x,) = 0 for all n > 1.

@ For x = (xn)n>0 in L2(R), we define
Senl3) = (Z& W(aP)) st = (L Ealu)
k=0
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o) = (L Eca) " 500 = (3 eeathaP)
k=0 k=0

@ For 0 < p < oo, the Hardy space hg(R) is defined as the collection of
all martingale differences x = (x5)n>0 in L2(R) s.t. sc(x) € Lp(R),
equipped with the (quasi-)norm ||(xa)n>ollne = [|sc(x)llp-
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o) = (L Eca) " 500 = (3 eeathaP)
k=0 k=0

For 0 < p < oo, the Hardy space h5(R) is defined as the collection of
all martingale differences x = (x5)n>0 in L2(R) s.t. sc(x) € Lp(R),
equipped with the (quasi-)norm ||(xa)n>ollne = [|sc(x)llp-

For o > 0, we define the martingale Lipschitz space Lip{, (R) as the
set

LipS(R) = {x € Lo(R) : sup2™||En(|x — Enx|*)||oe < 00}
n>0
equipped with the norm
Il = max (176l sup2™n(x — EnxPIL2).

Similarly, define Lip/ (R) equipped with the norm
IxIlLipr, (R) = X Lipe (r)-
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The dual space of h[(R) for 0 < p <1

Main Result

The following is our main result of this section:
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The dual space of hi(R) for 0 < p <1

Main Result

The following is our main result of this section:

Theorem 1 (J., Zhou, Wu, Zanin, 2017)

For every 0 < p < 1, we have (h;(R))* = Lipg(R), o = % — 1. More
precisely, for every x € LipS(R), the functional

ox ¥ = > T(ynxn), ¥ €hH(R),
n>0

is well-defined and bounded. Conversely, each ¢ € (h,(R))* is given by
the above formula with some x € Lip§(R). Moreover,

IxlLipg ) < ll@llng)
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Lemma 1 (Junge-Xu, 2003)

Let 0 < b < a € L1(M) such that the supp(a) = 1. For 1 < k < oo, we
have . -
T <aT(ak — bk)aT> < 2k7(a— b).

Lemma 2 (J., Zhou, Wu, Zanin, 2017)

If0<b<aeLy(M)and g€ (0,1), then

Br(a—b) < 7'((3/3 — bﬂ)al_ﬁ) < 7(a—b).
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Proposition 3 (J., Zhou, Wu, Zanin, 2017)

Let0<p<1andleta———1 If x € Lipg(R) and if y € h;(R), then

2+3p

Z T(|Xn’25r,n()’)2ip) <

n>0

” H p|| ”Llpa'

Proposition 4 (J., Zhou, Wu, Zanin, 2017)

Let y € hj(R) for 0 < p < 2. We have

2
> m(lyalPsra(y)P2) < 20 lylf.

n>0
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Proposition 3 (J., Zhou, Wu, Zanin, 2017)

Let0<p<1andleta———1 If x € Lipg(R) and if y € h;(R), then

2+3p

” H p|| ”Llpa'

Z T(|Xn’25r,n()’)2ip) <

n>0

Proposition 4 (J., Zhou, Wu, Zanin, 2017)

Let y € hj(R) for 0 < p < 2. We have

2
> m(lyalPsra(y)P2) < 20 lylf.

n>0

Observation: For x € R}, there exists a projection e such that 7(e) = 27"
and
1 x]|oo = 2"7(ex).
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Outline of the proof: (i) Let x € Lipg(R) and y € h,(R). Assume that
sr.n(y) is invertible. Then

(Px(}/) L= ’ZT(Xnyn) < Z’anr,n(}/)lig 2‘ 5r,n(}/)§71}/n )
n>0 n>0
1-F 2 % P_1 2 %
< (D2 Ibmsra)* 2] )7 - (X2 [|srn)® )
n>0 n>0
2111

It follows from Proposition 3 that

B 2+3p, 12—
2= (" bal?snly)* ) < Il Pl
n>0

It follows from Proposition 4 that

2
2 = (X iPsraly)?) < 25y,
n>0
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(ii) Let ¢ € (hp(R))" such that [|¢|[(h;)- < 1.
@ Since Lp(R) is dense in h;(R), there exists x € La(R) such that

P(y) =Y T(xkyi)s Yy = (Ya)nzo € Lo(R).
k

It suffices to show that [|x||Lipe < [|¢0|(nr)~-

e Fix n, choose e € R, such that 7(e) =27" and

1€a(1x = Ea(x)P)llso = 2"7(e - Enllx — En(x)*)) = 2" Y T(elxul?).

k>n

@ Set

0, k<n
Yk = 2n(1+2a)6X;:, k>n
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@ Then we have

I £ 227 E(Ix — Ea()P) oo = | D (yix)|
k

1
=[] < llylln, = HSE(y)Ilg:
Vi £ Ex(s7(y) = 227072 3 £ (elxile)
k>n
= 22n(14a) L g 92n0g (15 — £.(x)]?) - e.
@ Observe that V,, < III,, - 222(1+)e_ This implies
1 1 1 g 1
L, < [[s2(v)[12 < [[VE]lp < T3 - 25 [, = 113
2
@ Taking the supremum over all n > 0, we conclude that

sup 2" (| En(|x — En(x)P)IX2 = supIlI/2 < 1. O
n>0 n>0
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Partial Sums of Noncommutative Walsh-Fourier series

Classical result due to Watari

o Let (rk)k>0 be the Rademacher functions on [0, 1).
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Partial Sums of Noncommutative Walsh-Fourier series

Classical result due to Watari

o Let (rk)k>0 be the Rademacher functions on [0, 1).

® The Walsh system {wn},>1 is defined as follows: let wo(t) =1 and
wn(t) = [Ty ragi)(t), where n = 371 2(D=1 with
{n(1) > n(2) > --- > n(j) > 0}.
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Partial Sums of Noncommutative Walsh-Fourier series

Classical result due to Watari

o Let (rk)k>0 be the Rademacher functions on [0, 1).

® The Walsh system {wn},>1 is defined as follows: let wo(t) =1 and
wn(t) = [Ty ragi)(t), where n = 371 2(D=1 with
{n(1) > n(2) > --- > n(j) > 0}.

e Every f € L1([0,1)) can be written as a formal Walsh-Fourier series,

o0 R R 1
fwkgf(k)wk, f(k):/o F(Ewn(t) dt.
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Partial Sums of Noncommutative Walsh-Fourier series

Classical result due to Watari

o Let (rk)k>0 be the Rademacher functions on [0, 1).

® The Walsh system {wn},>1 is defined as follows: let wo(t) =1 and
wn(t) = [Ty ragi)(t), where n = 371 2(D=1 with
{n(1) > n(2) > --- > n(j) > 0}.

e Every f € L1([0,1)) can be written as a formal Walsh-Fourier series,

o0 R R 1
fwkgf(k)wk, f(k):/o F(Ewn(t) dt.

@ The n-th partial sum of the Walsh-Fourier series of f is defined by

setting
1

Sn(f) = F(K)wk.
0

3
|

x
Il
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Then Watari's result reads as follows:

Theorem (Watari, 1964)

For every f € L1(0,1) and for every n > 0, we have

150 (P L1, e 0,2) < €llflly(0,2)-
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Then Watari's result reads as follows:

Theorem (Watari, 1964)

For every f € L1(0,1) and for every n > 0, we have

150 (P L1, e 0,2) < €llflly(0,2)-

Can we find a noncommutative analogous of the above result?
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Partial Sums of Noncommutative Walsh-Fourier series

~-th partial sum of noncommutative Walsh-Fourier series

1) Consider the Pauli matrices:

(1 0 (01 (0 i
=0 -1) 7 10/ P o

The “anticommutative Rademacher system”in R is defined by setting:
oo o0
=1 n=00Qly rn=0®) lu,
i=2 i=2

and for n = 2k + s where s € {1, 2},

rn:(§00)®as®(i§21M2>.
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The r,'s are self-adjoint unitary operators. Moreover,

rirk +rerp =0,  k#j.
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The r,'s are self-adjoint unitary operators. Moreover,
rirk +rerp =0,  k#j.

2) Let F be the family of all finite subsets of N. For v € F, the
noncommutative Walsh system is defined by setting

Wy = rv(l)rv(z) ... rv(k) for v = {’7(1) > ’)/(2) > > 'y(k) > 0}

We also set wy = 1.
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The r,'s are self-adjoint unitary operators. Moreover,
rirk +rerp =0,  k#j.

2) Let F be the family of all finite subsets of N. For v € F, the
noncommutative Walsh system is defined by setting

Wy = Fy(1)Fy(2) - - - Fy(k) for v = {’7(1) > ’)/(2) > > 'y(k) > 0}

We also set wp = 1. ‘
3) For v = {y(1) > 7(2) > --- > ~(s) > 0} € F, let k, = >°3_, 27()-1,

Definition

For x € L1(R), we define the ~-th partial sum of the Walsh-Fourier series
of x with a given v € F as follows:

S = Y. xm)wy

{nEF:kn<ky}
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Partial Sums of Noncommutative Walsh-Fourier series

A weak type inequality of 7-th partial sum operator
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Partial Sums of Noncommutative Walsh-Fourier series

A weak type inequality of 7-th partial sum operator

The following is our main result of this section:

Theorem 2 (J., Zhou, Wu, Zanin, 2017)

For every x € L1(R) and for every v € F, we have

1550y, 0o (r) < €llXlLa(m)-
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Partial Sums of Noncommutative Walsh-Fourier series

A weak type inequality of 7-th partial sum operator

The following is our main result of this section:

Theorem 2 (J., Zhou, Wu, Zanin, 2017)

For every x € L1(R) and for every v € F, we have

15, 1,0e(®) < €llXlLy(w)-

Corollary (J., Zhou, Wu, Zanin, 2017)
For every x € L,(R), 1 < p < 00, and for every v € F, we have

1Sy ()L, (r) < SpllxllL (r)-
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Corollary (J., Zhou, Wu, Zanin, 2017)

For every x € Ay(R) and for everyy € F, we have

155Gy (r) < cavslixlln, (r)-

Here, A is a Lorentz space with ¢(t) = t(1 + log(%)).
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NC Calderon-Zygmund decomposition (Parcet, 2003, JFA)

1) For 0 < x € L1(R) and X > 0, it follows from noncommutative
Calderén-Zygmund decomposition that x = A 4+ B, where

o0
A=qxq+ Z PrkErXPK;

k=1
o0 oo o

B = Z ZPk(X — Evix)pr + Z pi(Eix — E1—1x)qi-1
k=1 =1 1<k<I

+ qr-1(Ex — E-1x) pk.-

Yong Jiao (CSU) Noncommutative Dyadic Martingales /27



NC Calderon-Zygmund decomposition (Parcet, 2003, JFA)

1) For 0 < x € L1(R) and X > 0, it follows from noncommutative
Calderén-Zygmund decomposition that x = A 4+ B, where

o0
A=qxq+ Z PrkErXPK;

k=1
o0 oo o

B = Z ZPk(X — Evix)pr + Z pi(Eix — E1—1x)qi-1
k=1 =1 1<k<I

+ qr-1(Ex — E-1x) pk.-

If 0 < x e L1(R) and A > 0, then

IA]3 < 16 ][x]]:.-
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2) For 0 < x € L1(R) and 0 € F, define the operator Ds by setting

Ds(x)= > K(a)wa

acF,a(l)ed
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2) For 0 < x € L1(R) and 0 € F, define the operator Ds by setting

Ds(x)= > K(a)wa

acF,a(l)ed

Lemma 4 (J., Zhou, Wu, Zanin, 2017)

Let § € F and let x € L1(R).
(i) For every k,/ > 1, we have

Ds(pk(x = Exvix)pr) = pkDs(x — Exvix)pi-
(ii) For every 1 < k < [, we have

Ds(pk(E1x — E1-1x)q1-1) = Pk Ds(E1x — E1-1x)q)-1,

Ds(qi-1(Ex — E1-1x)pk) = qi—1Ds(Eix — E-1x) pk-
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3) Sketch of the proof of Theorem 2:

o Let 6 € F. For x € L1(R), we have S5(x)w; = Ds(xwj). Since
lwsSs(x)| = |Ss(x)], it suffices to prove the weak inequality for D;.

@ For A > 0, using the noncommutative Calderén-Zygmund'’s
decomposition we have

™ (%20 (1056 < 7 (X020 (IDs(A))) + 7 (10,00 (1D5(B)])
=V 4+ VL

@ From Lemma 3 we have
_ _ 16
V < A7?Ds(A)[5 < A 2IIAII§STIIXII1-
o By Lemma 4,

3
VI < 37(1 - q)< il O
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Noncommutative Walsh systems in L,(R) and in BMO(R)

Let W, = { € F: Card(y) = L}. Denote the closed linear space of
(Wv)weWL by [Wi].
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Noncommutative Walsh systems in L,(R) and in BMO(R)

Let W, = { € F: Card(y) = L}. Denote the closed linear space of
(Wv)weWL by [Wi].

Theorem (Miiller and Schechtman, 1989)
For L > 2, [W,] is not complemented in martingale Hardy space Hs.
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Noncommutative Walsh systems in L,(R) and in BMO(R)

Let W, = { € F: Card(y) = L}. Denote the closed linear space of
(Wv)weWL by [Wi].

Theorem (Miiller and Schechtman, 1989)

For L > 2, [W,] is not complemented in martingale Hardy space Hs.

Our main result of this section demonstrates a very substantial difference
from the above theorem.
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Noncommutative Walsh systems in L,(R) and in BMO(R

Let W, = { € F: Card(y) = L}. Denote the closed linear space of
(Wv)weWL by [Wi].

)

Theorem (Miiller and Schechtman, 1989)
For L > 2, [W,] is not complemented in martingale Hardy space Hs.

Our main result of this section demonstrates a very substantial difference
from the above theorem.

Theorem 3 (J., Zhou, Wu, Zanin, 2017)

[W5] is complemented in bmo(R) and in H1(R).
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Theorem 4

Let 1 < p < oo and let L > 1. For every (ay)yer € b(F), we have

N\ 1/2

H Z O‘WW*YH ~p,L ( Z [ ) .
Lp(R)

YEWL YEWL
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Theorem 4

Let 1 < p < oo and let L > 1. For every (ay)yer € b(F), we have

H Z H ‘ ‘2 "
Y Ly(R) P, Y
yeW, yeW,

For every (ay)yer € h(F), we have

1/2

(S0 <] 3 o <2 She?)
v 2
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Proof of Theorem 3: Let P be the orthogonal projection on Ly(R) by
setting

Px = Z (X, wyhwy, x € Lr(R).
yeEW,

According to Theorem 5, we have
[1Px[[bmoc(r) < 4lIPxll2 < 4|x[[2 < 4l[x[|bmos(w)-

The same inequality holds in bmo"(R) and, therefore, in bmo(R). Thus,
[W5] is complemented in bmo(R). Recall that BMO(R) = bmo“(R). By
duality,

1Pxlyery S IIxllae(r)-

Therefore,

1Px[l3¢,(ry < inf {{IPyllpe(ry + I1PZll2rmy - x =y + 2}
< inf {||YHH§(R) + HZHH;(R) CX=y+ Z} = |l (r)- U
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Yong Jiao (CSU)

Thank You!
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